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1. Introduction  
The MemryX tower architecture is a streaming, many-

core, near-memory dataflow design created from the 

ground up to accelerate AI workloads such as neural 

networks. In this document, we highlight the key 

concepts behind this architectural approach, explaining 

why each feature was introduced and how it impacts 

overall performance and efficiency. 

We forgo traditional control-flow style architectures 

and elect to use a Dataflow compute paradigm, which 

natively aligns with the compute graphs that define 

Neural Networks (See Figure 1). In control-flow style 

architectures, a considerable amount of time and 

hardware resources are devoted to decoding 

instructions, computing addresses, and pre-fetching 

data. Data movement is inherently energy inefficient 

and transistor area is better spent on compute and 

storage than on-chip control-flow. Additionally, data 

routing and workload scheduling must be carefully 

managed to achieve any meaningful utilization of the 

hardware resulting in more complex software stack that 

often needs to be optimized on a per-model basis.  

In contrast, MemryX Dataflow Architecture features 

powerful tensor compute-cores that are configured 

once at compile-time and then communicate directly 

with each other simply through the input and output 

data they consume and produce. Complex operators 

such as Convolution and Dense are supported at the 

hardware level with custom state machines, eliminating 

the need to decompose these operators into multiple 

instructions. Moreover, cores are able to each pass data 

directly to subsequent compute nodes without 

requiring a router or global scheduler. This enables a 

high level of scalability and design efficiency while 

streamlining data movement and execution. 

MemryX Tower architecture consists of numerous 

heterogeneous dataflow cores—called MemryX 

Compute Engines (MCEs)—operating independently in 

a fully data-driven manner. Control is decentralized, 

enabling each MCE to process data as soon as it 

becomes available. The MX3 contains two main types 

MCEs: MAC cores (M-Cores) and ALU cores (A-Cores). 

By dividing the workload among multiple cores, the 

MemryX architecture naturally supports space 

multiplexing, allowing each neural network layer to be 

mapped efficiently and streamed through the dataflow 

 

Figure 1 - Illustration of the dataflow concept used in MemryX tower architecture. 
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pipeline. MemryX modular dataflow architecture 

enables different types of MCEs to be implemented in 

the future chips while maintaining necessary 

compatibility. 

On-chip distributed memories play a central role. Two 

key and separate memory types are used: weight 

memories that store neural network parameters, and 

feature-map memories that hold input, output, and 

intermediate data during inference. The feature-map 

memory also acts as the communication medium 

between processing elements, eliminating the need for 

a centralized on-chip memory and enabling software-

defined data pathways. Each core or cluster of cores 

writes its partial results to the feature-map memory, 

allowing consumer clusters to read from this same 

shared buffer. This seamless data exchange reduces 

complexity by avoiding direct core-to-core 

communication and offers robust scaling options for 

larger systems and more complex models. 

Cores and memories can be arranged in interleaving 

stacks that give rise to the “tower” nomenclature, as 

shown in Figure 2. Each compute tower contains an 

optimized number of groups of M-Cores and A-Cores 

alongside local weight memory, interleaved with 

feature-map towers. Every M-Core interfaces with local 

weight memory, adjacent feature-map towers, and 

neighboring M-Cores. A-Cores similarly interface with 

local LUTs (look up tables) and adjacent feature-map 

towers. This arrangement is optimized for efficient 

dataflow execution, as neural network inputs stream 

through multiple layers until reaching the final output. 

The MemryX compiler programs the architecture 

offline and leverages a streaming execution model. 

Cores or clusters of cores are assigned specific tasks, 

processing incoming data and passing results forward 

in a pipeline. The compiler predetermines both how 

each core is programmed and how data flows between 

cores, ensuring balanced workload distribution and 

data coherence. One key objective is to maintain or 

create close producer-consumer relationships, 

strategically placing related operations near each other 

to maximize efficiency and minimize data movement. 

Throughout the rest of this document, we will highlight 

how the architecture’s features come together to 

enable efficient, scalable, and accurate acceleration of 

neural networks on MemryX hardware. 

2. Hardware-

Software Codesign 
The MemryX tower architecture is designed from the 

ground up to be an efficient dataflow platform for AI 

workload acceleration. A key design priority is 

systematically balancing hardware and software 

elements, to achieve optimal utilization and seamless 

 

Figure 2 - Illustration of the tower architecture, showing the interleaving stacks of compute and memory towers. 
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usability. This co-design approach prioritizes efficient 

neural network acceleration while ensuring ease of use 

for developers. Through a flexible division of 

architectural features between hardware and software 

layers, the system attains peak performance and 

flexibility. 

The steps to achieve an efficient co-design are as 

follows: 

• Step 1: Architectural Concept and 

Mathematical Modeling: In the first phase, 

foundational architectural concepts are 

introduced based on the overall design goals, 

lessons learned from previous designs, and 

market needs. These concepts are then 

encapsulated in a comprehensive 

mathematical model containing hundreds of 

equations. Such equations capture both 

primary and lower-order properties of the 

architecture, providing a precise theoretical 

framework that guides subsequent design 

phases. 

 

• Step 2: Architecture Tool: Next, the equations 

derived from the mathematical model are 

encoded into an analytical solver tool. This tool 

accepts various inputs—such as hardware 

constraints and the broad properties of target 

AI models, including layer counts and 

operators per layer—and solves them under 

these constraints to uncover an optimal design 

point. This stage often leads to the discovery 

and refinement of additional architectural 

features or design strategies, further 

optimizing performance and efficiency (see 

Section 4 for details). 

 

• Step 3: Detailed Modeling and Functional 

Compiler: Once the core architectural data has 

been finalized, a detailed SystemC model is 

created. This model goes beyond the 

mathematical equations to incorporate higher-

order considerations, such as memory 

arbitration and latency details. In parallel, a 

functional compiler is developed to target the 

SystemC model as its backend. This compiler 

operates with bit accuracy akin to the final 

hardware, while the timing is sufficiently 

estimated to be within ~10% of the chip’s 

actual performance. Using this compiler and 

SystemC model, AI workloads are compiled 

and validated to ensure they meet the targeted 

levels of accuracy, performance, and utilization. 

Should these goals fall short, new hardware or 

software features are introduced and iteratively 

tested. 

 

• Step 4: Microarchitecture Design and 

Finalization: By step 4, the architecture is 

stable enough for detailed microarchitecture 

design and front-end development. The 

SystemC model remains the default backend 

for the compiler until the chip is fully 

fabricated, acting as a reliable reference for 

ongoing development. As the compiler 

continues to evolve, it expands its feature set 

and performance optimizations while 

maintaining a solid hardware-software 

foundation. This holistic, iterative process 

ensures that the MemryX tower architecture 

delivers on its promise of efficient, user-

friendly AI acceleration. 

Throughout the remainder of this document, we will 

emphasize the principles of hardware/software co-

design as we explore the architecture’s key features. 

3. Design for 

Scalability 
A key aspect of our design philosophy is modularity 

and autonomy in the compute elements. By relying on 

a distributed-control, dataflow approach in both cores 

and memories, the MemryX architecture becomes 

inherently scalable. The size of the chip—along with 

its computational power—can now be treated as a 

target-market choice rather than a rigid architectural 

constraint, enabling efficient scaling to create the right 
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level of performance for a given application, from 

battery powered devices to data center applications. 

The MX3 design target was Edge AI applications such 

as industrial applications, security systems, Edge 

Servers, robotics, and more. 

Moreover, this distributed-control concept extends 

beyond the chip level. Multiple MemryX chips can be 

cascaded within a single module, appearing to 

developers and users as a single larger logical device, 

as shown in Figure 3. Communication between these 

chips operates autonomously, with no host 

intervention required. The compiler automatically 

distributes workloads across the combined resources, 

treating them as a unified accelerator while each chip 

continues to function independently. Aside from 

ensuring data validity, there is virtually no 

synchronization overhead between chips, further 

enhancing both scalability and reliability in a wide 

range of deployment scenarios. 

4. Design for 

Efficiency 
Designing the architecture for efficiency means doing 

more with less. A solid design should extract the 

highest performance from the fewest resources. 

Accordingly, we strive to minimize chip area, overall 

power, cost, and design complexity, while 

simultaneously maximizing performance (frames per 

second), hardware utilization, model coverage 

(operator support), target applications, and ease of 

use. 

Although the architecture is built on innovative 

principles (discussed throughout this document), these 

alone are insufficient for an efficient design. We must 

carefully determine how many compute units (MCEs) 

and memory blocks to instantiate, and how to organize 

and interconnect these resources. These architectural 

decisions profoundly influence performance and 

efficiency and must be made systematically. 

Balancing Compute and Memory 

Bandwidth 

Neural network inference primarily relies on 

vector/matrix multiply-and-accumulate (MAC) 

operations, implemented in our architecture via 

efficient fused multiply-adder blocks. Each MAC 

multiplies a feature map value by a weight value and 

adds the result to a running partial sum. To generate a 

single output value, numerous MAC operations are 

performed. A network layer computes many such 

values to form a complete feature map, and multiple 

layers work together to produce the final network 

output, resulting in millions or even billions of 

computations per inference. 

While each output computation is generally 

independent, allowing parallel processing via multiple 

MAC units in a SIMD-like fashion, simply adding more 

compute can become wasteful if data (weights and 

feature-map values) cannot be supplied quickly 

enough from memory. Excess MAC units would remain 

idle, occupying chip area and power without boosting 

performance. Maintaining an optimal balance 

between memory and compute is crucial. Too many 

MAC units may cause the architecture to hit a memory 

 

Figure 3 - Illustration of MemryX scaling, from left to right: a single chip (left), multiple chips cascaded to 

form a larger logical device (center), and a physically bigger chip (right). This approach enables performance 

scaling both at the individual chip level and across interconnected modules. 
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wall, where insufficient memory bandwidth leads to 

compute starvation. However, data reuse and other 

architectural techniques help mitigate bandwidth 

limitations by maximizing efficient usage of available 

memory resources, as shown in Figure 4. 

The MemryX architecture balances memory bandwidth 

and compute to ensure high utilization. We achieve 

greater bandwidth by using on-chip distributed and 

segregated memories (see Section 5). High utilization 

combined with significant on-chip memory bandwidth 

enables MemryX architecture to outperform alternative 

architecture with much higher TOPS. In fact, the MX3 

outperforms many AI computing systems with >10X 

more quoted peak TOPS. 

Choosing an Optimal Design Point 

We systematically determine the number and 

organization of MCEs, as well as the size, bandwidth, 

and hierarchy of on-chip memory. Balancing these 

elements is challenging due to the higher-order 

interdependencies of a dataflow-centric system. To 

address this, we encode our architectural innovations 

into a large system of equations representing the 

accelerator’s behavior at a high level. We then 

constrain this system using cost, performance, and 

power targets, referencing a pool of representative 

neural network models to capture typical operations, 

memory needs, and operator support. With properly 

specified parameters, the system can be solved to yield 

an optimal or near-optimal balanced design point. 

Once we arrive at this balanced design, we validate our 

choices using a co-designed architecture simulator and 

neural compiler, running real-world models to evaluate 

utilization and performance. Through iterative 

refinements—adjusting constraints and implementing 

improvements—we approach an optimal configuration 

(see Section 2 for details). The MemryX scalable 

hierarchy (MCE → MCE-Groups → Compute-Towers 

→ MXAs) further organizes workloads across the chip. 

As a result, we can often deliver higher performance 

than competing solutions even with MemryX having far 

fewer raw compute elements, since our utilization is 

inherently more efficient. 

5. Distributed 

Memory 
Over the past few decades, the performance of 

processors has increased significantly, outpacing the 

improvements in memory performance. This growing 

disparity, often referred to as the “memory wall,” has 

led to situations where the speed of computation is 

limited by the slower rate of data retrieval from 

memory. Traditional computer architectures use a 

hierarchical caching mechanism to exploit spatial and 

 

Figure 4 - An example illustrating how adjusting core granularity influences feature-map and weight data 

bandwidth as well as data reuse—just one among hundreds of interconnected design parameters in the system. 
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temporal locality of program memory, aiming to hide 

the discrepancy between the speed of compute and 

the speed of data movement. However, the parameter 

counts of neural network workloads often exceed 

typical cache sizes, so locality becomes more difficult 

to exploit, and the throughput of the compute system 

becomes directly correlated with its memory 

bandwidth. Moreover, moving data from a distant 

source like DRAM consumes an order of magnitude 

more energy than the actual computation. Our 

architecture employs three main innovations to 

overcome these limitations. 

First, we elect to use on-chip memory, thereby 

eliminating costly DRAM fetches and doing away with 

expensive off-chip interfaces. On-chip memory 

provides the necessary bandwidth, low latency, and 

minimal read power required to move relatively large 

parameter sets quickly and efficiently to the compute 

units. This also circumvents the overhead of memory 

caching hierarchies in which data must pass through 

multiple levels of memories before finally reaching the 

compute, resulting in many unnecessary reads/writes 

and wasted energy. 

Second, we elect to distribute the memory across the 

chip, co-locating memory and compute units as 

opposed to having large caches separated from large 

compute clusters. By minimizing the distance between 

memory and compute, we greatly reduce the energy 

cost and routing complexities associated with the 

computation of a Neural Network. Incorporating 

distributed on-chip memory gives us the flexibility 

when designing the architecture to balance the 

compute throughput and memory bandwidth much 

more effectively than traditional architectures. This is 

because the number of memory blocks, their relative 

size, and the read-width / ports can be tuned to fit our 

needs. 

Third, we separate the two flavors of memory that 

appear in neural networks: 

• Parameters – Used to compute the inference 

results of a compute node (generally read-

only). 

• Feature Maps – Used to communicate 

inference results between compute nodes 

(frequently read and written). 

Segregating these memory types allows us to leverage 

their unique properties. Parameter memory generally 

belongs to a single layer and is read-only, while 

feature-map memory is shared among multiple layers 

and experiences continuous reads and writes. We place 

parameter memory within MCE-Groups and feature-

map memory between MCE-Groups. In doing so, 

weight memory can serve the cores within its group 

directly, whereas feature-map memory handles inter-

layer communication. We further leverage memory 

specialization by optimizing the types of memory and 

their characteristics to better suite their role. For 

example, we can opt for high-density, read-optimized 

memory blocks for the parameter memory. In contrast, 

we employ mutli-port memories with equal read/write 

speeds for the feature map memories to serve as the 

Inter-Layer communication fabric (see Section 7 for 

details). 

Finally, the unique memory principals that underline 

our architecture means we are positioned to leverage 

new and emerging memory technologies that align 

with these types of workloads. Breakthroughs in Neural 

Network optimized RRAM or MRAM technologies can 

be easily incorporated into our architecture leveraging 

the higher-density, read-oriented, and non-volatile 

nature of these technologies. 

6. Dataflow Cores 
The MCEs are the compute cores designed from the 

ground-up for the MemryX dataflow architecture. Their 

designs are focused on three key aspects: 

1. No Instruction Fetch: In traditional control-flow 

architectures, each core must fetch both data and 

instructions. By contrast, the MCEs operate 

autonomously, relying on configuration registers and 

state machines instead of typical instructions. This 

approach eliminates instruction-fetch overhead and 

frees memory bandwidth for data transfers. 
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2. Asynchronous Submodules: Consistent with the 

broader MemryX architecture, MCEs are data-driven 

and feature no centralized control. Each core is 

divided into three independently-operating 

submodules or “stages”: 

• Data Fetch: The “front” of the core, it retrieves 

one feature map from on-chip memory and, if 

needed, weights from weight memory. It also 

manages Inter-Layer Communication (ILC) 

transactions. In a compute cluster, a core can 

also read data from nearby cores within the 

same Core Group. 
 

• Compute: Fetched data is then passed to the 

Compute stage, which executes the assigned 

operation (e.g., Convolution, Addition). 

Meanwhile, the Fetch stage is free to continue 

work asynchronously, retrieving the next 

required data. When the Compute stage 

finishes its operations, it hands its results to 

the Writeback stage. 
 

• Writeback: Receives processed feature-map 

data from the Compute stage, writes it back to 

feature-map memory, and completes any 

remaining ILC operations. 

3. Deterministic Execution: The deterministic nature 

of the cores is vital for role within the overall dataflow 

architecture. The number of cycles each core takes to 

Fetch, Compute, and Writeback is carefully controlled 

in order to fall within expected memory read/write 

latencies. This deterministic design allows the Neural 

Compiler to accurately predict performance when 

mapping neural networks to the accelerator, and 

allocate resources accordingly. 

Heterogeneous Cores 

While a single, general-purpose core design could 

simplify software mapping, it risks having “idle silicon” 

if seldom-used features occupy chip area. To address 

this, MemryX employs a minimally heterogeneous 

design with specialized core types each focusing on 

different sets of operations that typically do not 

overlap (See Figure 5). 

M-Core (MAC Core): The M-Core is a high-

throughput vector/matrix compute core specialized for 

feature-map-by-weight operations, such as 

Convolution, Dense (Linear) layers, and striding window 

functions (e.g., Pooling, Upsampling). It can also handle 

common activation functions. Rather than using 

sequential instructions, the M-Core’s ISA is parameter-

based, relying on state machines that count to 

configured thresholds. This design allows the M-Core 

to dedicate most of its power and area to multiply-

accumulate (MAC) units, maximizing throughput for 

core neural-network operations. A set of configuration 

registers defines the operation type, feature-

map/kernel shapes, strides, pooling properties, and 

 

Figure 5 - A top-level view of the M-Core and A-Core organizations, highlighting the three stages (Data Fetch, 

Compute, Writeback) and illustrating how each core type connects to memory resources and adjacent cores. 
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memory addresses. Once set, the M-Core runs 

autonomously, counting up to the specified limits and 

taking appropriate actions when those counts are 

reached. 

A-Core (ALU Core): The A-Core handles feature-map-

by-feature-map operations (e.g., Add, Multiply, Concat) 

and specialized arithmetic (Reciprocals, Softmax, LUT-

based approximations). Its microarchitecture shares 

similar Fetch and Writeback stages with the M-Core, 

but the Compute stage differs significantly. In 

Compute, the A-Core uses a RISC-like ISA with 

instructions and data registers, along with LookUp 

Tables (LUTs) for approximating complex functions. All 

instructions are stored in configuration registers within 

each A-Core instead of an external SRAM, eliminating 

instruction-fetch overhead and allowing flexible 

chaining of simple operations into more complex ones. 

By pairing M-Cores with A-Cores, MemryX achieves a 

balanced hardware solution. This arrangement 

prevents unnecessary resource usage, avoids idle 

hardware, and maintains high efficiency across diverse 

neural network operators. 

Graph Engine 

Building on the strengths of the heterogeneous cores, 

the MemryX architecture natively supports a key set of 

hardware-accelerated operators (e.g., Convolution, 

Dense, Pooling, Add). Moreover, operator fusion 

techniques allow us to merge frequently adjacent 

operations (e.g., Convolution + BiasAdd + Activation), 

drastically reducing memory reads and writes. 

However, this hardware configurability must be 

carefully balanced against area, power, and complexity 

constraints. Therefore, MemryX leverages sophisticated 

graph processing to extend the range of supported 

operators through software. The Graph Processing 

Layer in the Neural Compiler, co-developed with the 

hardware, has deep insights into the capabilities of 

MCEs. 

The graph engine iteratively applies various 

transformations to optimize the compute graph for 

the MemryX architecture. These transformations 

include fusion (combining adjacent operators into a 

single node), conversion (mapping unsupported 

operations to equivalent, hardware-friendly ones), 

decomposition (breaking complex operators into 

simpler sub-operations), recomposition (merging 

multiple sub-operations into a single high-level 

function), reordering (altering operation order for 

greater efficiency), and approximation (using simpler 

algorithms or LUT-based methods when direct 

hardware support is lacking). By applying these steps, 

the graph engine maximizes performance and 

extends operator support well beyond the raw 

hardware features—allowing a broad array of neural 

networks to run efficiently on MemryX accelerators 

while provide very high accuracy outputs. 

While some of graph optimization steps, such as batch 

normalization fusion, are generally hardware 

independent, a majority of the graph processing steps 

are implemented to specifically optimize neural 

network execution on the MXA. Our custom Neural 

Compiler and MXA architecture were co-designed, so 

the hardware DNA is tightly encoded into our software 

stack, allowing us to achieve maximal utilization of the 

MXA hardware. 

7. Through Memory 

Communication 
A typical neural network model can be represented as 

a compute graph, with each layer’s output (the feature 

map) serving as input to one or more subsequent 

layers. When this graph is mapped onto MemryX 

hardware (MXA), the workload is distributed across 

multiple MCEs (see Section 8 for details). Each core or 

compute cluster acts as a consumer of feature-map 

data originating a producer upstream core/cluster, 

while its own outputs can serve as inputs to another 

downstream cluster. This producer–consumer 

paradigm defines how data flows throughout the 

MemryX architecture. 
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Reservoir Concept 

To facilitate communication between clusters, MemryX 

employs a shared feature-map memory buffer, 

allowing the producer to write data and the consumer 

to read it directly—no router or on-chip network is 

required. A sophisticated inter-layer-communication 

module (ILC) manages data synchronization: for 

instance, a consumer cannot begin computing until the 

producer has generated enough data. The ILC enforces 

this by preventing data fetches in the consumer until 

the producer has finished writing. 

In a less sophisticated design, a producer cluster would 

generate an entire feature map before any consumer 

could start. This approach is inefficient in both time 

and space, as it demands large buffers for intermediate 

feature maps and blocks the consumer from running 

while the producer is still active. By contrast, MemryX 

exploits neural network properties to enable adjacent 

clusters to work simultaneously, as illustrated in 

Figure 6. Once enough data is available, the ILC allows 

the consumer to begin processing while the producer 

continues operating on the rest of the data. Carefully 

structuring the order of computation discards data that 

is no longer needed, significantly reducing the memory 

footprint for intermediate feature maps. 

Adjacency 

While the ILC reservoir concept offers a 

straightforward and efficient way for MCEs to exchange 

data in a dataflow manner, it does rely on the 

assumption that both producer and consumer cores 

share access to the same feature-map tower. This 

requirement implies an adjacency between cores that 

need to communicate. However, in more complex 

neural networks or computational graphs direct 

adjacency is not always possible since far-apart layers 

may need to exchange data. 

This is where software-hardware splitting comes into 

play (see Section 2). Instead of relying on a full on-chip 

network or router-based approach, short-distance 

(adjacent) communication is handled locally by the ILC 

reservoir as discussed. Meanwhile, long-distance 

communication is addressed at compile time through 

the mapper’s place-and-route mechanisms. Whenever 

preserving direct adjacency is not feasible, the compiler 

can insert lightweight bypass nodes in the dataflow 

graph, as shown in Figure 7. These bypass nodes 

ensuring the adjacency requirement is met—even 

when layers must be placed far apart. 

The compiler may also choose to create adjacency 

rather than merely preserve it if doing so results in a 

more optimal placement, routing, or performance 

 

Figure 6 - Illustration of the ILC reservoir concept in three modes of operation: (1) Pipeline fill (left): The consumer 

must wait for the producer to generate sufficient data. A similar scenario occurs in unplanned workload situations 

where the producer generates data at a slower rate than the consumer. (2) Optimal concurrency (middle): Both 

producer and consumer operate in parallel while data remains within the reservoir’s minimum and maximum 

thresholds. (3) Faster producer (right): The producer outpaces the consumer. This can also occur due to 

backpressure from the consumer output. 
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outcome. For example, the mapper might position a 

layer farther away in order to assign more compute 

cores, if overall performance benefits by inserting the 

additional bypass nodes. 

Flow Simulator 

The first two aspects of data movement—ILC and 

adjacency—lay the groundwork for transferring data 

across the tower architecture. Another key factor is the 

buffer size that must be allocated to each producer–

consumer pair, along with the corresponding ILC 

parameters. Because on-chip feature-map memory is 

limited, these allocations must be carefully computed. 

For instance, one consumer might process multiple 

rows at once, while another handles just a single row; 

the producer might overwrite data only after it has 

been fully consumed. 

The compiler applies a set of equations to determine 

each buffer’s size and ILC settings, enabling 

concurrent rather than step-locked operation. More 

intricate structures, like branch-and-merge or nested 

loops (which are common in modern neural networks), 

can risk deadlock if a branch runs faster than the rest 

and lacks sufficient buffering. To address these issues, a 

Flow Simulator detects hazards—such as potential 

deadlocks—and assigns extra buffer resources or 

reorders tasks to maintain smooth pipeline 

performance. It also helps reduce stalls (bubbles), 

balance throughput across branches, and minimize 

memory access conflict. 

In scenarios with large feature-map requirements, the 

compiler can revert certain producer–consumer 

interactions to step-lock mode. While this lowers peak 

performance, it ensures that high-memory workloads 

fit within available resources, striking a practical 

balance between efficiency and real-world constraints. 

8. Workload 

Distribution 
Workload distribution is pivotal to the MemryX tower 

architecture. By leveraging hardware flexibility and 

advanced compiler techniques, neural network layers 

can be split and mapped across multiple MCEs to 

maximize performance and resource utilization. Within 

a dataflow paradigm, every layer (or computational 

graph node) functions as both a producer and a 

consumer (see Section 7 for details). 

At a higher level, the MemryX compiler transforms the 

original neural network (or multiple neural networks) 

into an enhanced graph (See Section 6 - Graph 

engine), where workload is assigned to a group of 

MCEs—known as a compute cluster. The compiler 

decides not only how many cores to allocate to each 

cluster but also how to distribute the workload among 

those cores, selecting from various techniques based 

on both the layer’s properties (e.g., dimensions, 

channel count) and hardware specifications (e.g., 

weight memory bandwidth). 

Distribution Strategies 

1. Output-channel distribution: One fundamental 

approach is output-channel distribution, where each 

MCE computes a subset of the output channels across 

 

Figure 7 - A diagram illustrating how the compiler can preserve adjacency by placing the consumer in the same 

or an adjacent feature-map tower, or create adjacency through a lightweight bypass node when layers must be 

placed farther apart. 
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all spatial dimensions (see Figure 8). Because cores do 

not directly exchange weight or intermediate data, 

synchronization overhead is minimal—only coarse-

grained ILC producer/consumer checks are required. 

This strategy often excels for layers with many output 

channels. 

2. Pixel workers: Another method is pixel workers, 

where each core processes part of the spatial 

dimensions for all output channels. Rather than every 

core fetching the same weights, only the topmost core 

in a chain retrieves them and passes the data along. 

Each subsequent core reuses these weights for its 

assigned pixels, significantly reducing weight-memory 

traffic (see Figure 8). While highly effective for layers 

with large spatial dimensions, it may be less suitable for 

operations that produce only a few output pixels. 

3. Compound distribution: A third option is 

compound distribution, which merges channel-slicing 

and pixel distribution. The layer is split into sub-layers 

(or slices of output channels), each further divided into 

pixel-driven tasks for a group of cores. This method 

enables MemryX to handle deeper, more complex 

layers by sharing weight data where it’s most 

beneficial, and can even scale across multiple MCE 

groups or chips. Additional techniques—such as input 

channel–based distribution—may also be used, 

depending on the network architecture. 

Crucially, all these distribution strategies are 

orchestrated by the MemryX compiler, which uses an 

equation-based model and an optimizer that 

iteratively refines each layer’s mapping. The compiler’s 

objective is to sustain high utilization across MCEs, 

avoid memory bottlenecks, and reduce unnecessary 

data movement. 

9. Hybrid Precision 

Compute 
Throughout this document, we have emphasized the 

performance and ease of use of the MemryX 

architecture. Another vital consideration is accuracy. 

Many accelerators on the market adopt fully INT8 

computations for speed, which can be fine for static 

parameters (weights) because they can be quantized 

offline. However, extending INT8 to feature-map data, 

which is inherently dynamic and depends on real-time 

inputs, introduces a significant challenge. Such 

accelerators often require a “tuning” phase with a 

representative dataset to establish scaling factors, and 

even then, accuracy can deteriorate if actual inputs 

differ from the tuning data. This process also 

complicates deployment, as collecting and tuning with 

real-world data becomes an extra step—and the results 

are only as reliable as the data used.  

An alternative to INT8 is to store feature-map data in a 

floating-point format (e.g., BF16), preserving the 

network’s dynamic range and accuracy. Unfortunately, 

BF16 effectively doubles the memory bandwidth and 

storage requirements compared to INT8, leading most 

solutions to offer either fast INT8 paths or slower 

 

Figure 8 - Illustration of two workload distribution strategies for a single neural network layer: output-channel 

distribution (left), where each core handles a subset of output channels, and pixel workers (right), where each core 

processes distinct spatial regions using shared weight data. Notably, in pixel-worker mode, only one core needs 

direct access to the weight memory, thereby preserving memory bandwidth. 
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floating-point options—or in many edge accelerators, 

only INT8 capabilities. Users are then forced to choose 

between sacrificing accuracy or accepting reduced 

throughput. 

MemryX offers an optimized solution using Group-

BFloat, a specialized format for feature-map data. 

Group-BFloat provides sufficient dynamic range, similar 

to BF16, but shares the exponent across multiple 

mantissas, as shown in Figure 9. This arrangement 

substantially reduces bandwidth and storage overhead 

while still accommodating the variability of neural 

network feature maps. Although sharing an exponent 

may not be ideal for every general-purpose use case, it 

aligns effectively with the statistical behavior of neural 

network activations. Furthermore, this is a parameter 

designed to be overridden should even higher 

precision be required for specific layers. 

When Group-BFloat is used for feature-map data 

alongside quantized weights, the MemryX tower 

architecture delivers the best of both worlds. This 

combination not only achieves performance levels on 

par with an INT8/INT8 pipeline but also preserves 

accuracy comparable to traditional floating-point 

computations. 

Efficient MAC 

To realize these hybrid precision operations in 

hardware, each MemryX Core Engine (MCE) relies on 

multiply-accumulate (MAC) units at its computational 

core. A MAC unit accepts weight values, stored 

primarily in INT8 or INT4 (though INT16/INT32 are also 

supported via software layers) and input activations in 

Group-BFloat format. It multiplies these inputs and 

accumulates the resulting partial sums in an internal 

register. In many cases, the MAC sums tens of 

thousands of such products before producing its final 

output. By adjusting the sequence in which weights 

and activations are fed to the MAC, the same hardware 

can efficiently handle various vector/matrix operations. 

Within the current generation, INT8 remains the default 

weight format, while INT4 halves memory usage (or 

doubles parameter capacity) but may introduce 

additional accuracy considerations. Meanwhile, Group-

BFloat is the format used for input activations, sharing 

an exponent across multiple pixels to reduce 

bandwidth and storage requirements. Because the 

MAC sits at the heart of each MCE’s compute 

capabilities, its design is pipelined for high 

throughput, delivering two floating-point operations (a 

multiply and an add) per clock cycle. By leveraging a 

shared exponent in the Group-BFloat format, certain 

logic can be reused, further reducing power 

consumption and silicon area. 

10. Summary 
The current generation of the MemryX tower 

architecture introduces innovative dataflow 

principles that enable a highly efficient, easy-to-use 

edge AI accelerator. By co-designing both hardware 

and software, MemryX achieves a balanced partition of 

features between silicon and the compiler/tooling 

layers. Through modular, distributed control and on-

chip distributed memories, the system attains scalable 

performance with minimal off-chip data transfers and 

high resource utilization. 

In this document, we followed a top-down narrative to 

explore the high-level concepts behind the MemryX 

tower architecture—from dataflow execution and 

hybrid precision strategies to heterogeneous cores and 

distributed memory. These insights provide a deeper 

understanding of how and why MemryX chips are 

designed, offering both developers and advanced users 

a clear view of the architectural decisions that enable 

MemryX products to excel. 

 

Figure 9 - Group-BFloat format balances memory efficiency and accuracy by sharing an exponent across multiple 

mantissas, reducing bandwidth and storage overhead while maintaining dynamic range. 
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