

The MemryX Tower Architecture

memryx.com Page 1 of 12

 © 2025 MemryX Inc., All Rights Reserved

1. Introduction
The MemryX tower architecture is a streaming, many-

core, near-memory dataflow design created from the

ground up to accelerate AI workloads such as neural

networks. In this document, we highlight the key

concepts behind this architectural approach, explaining

why each feature was introduced and how it impacts

overall performance and efficiency.

We forgo traditional control-flow style architectures

and elect to use a Dataflow compute paradigm, which

natively aligns with the compute graphs that define

Neural Networks (See Figure 1). In control-flow style

architectures, a considerable amount of time and

hardware resources are devoted to decoding

instructions, computing addresses, and pre-fetching

data. Data movement is inherently energy inefficient

and transistor area is better spent on compute and

storage than on-chip control-flow. Additionally, data

routing and workload scheduling must be carefully

managed to achieve any meaningful utilization of the

hardware resulting in more complex software stack that

often needs to be optimized on a per-model basis.

In contrast, MemryX Dataflow Architecture features

powerful tensor compute-cores that are configured

once at compile-time and then communicate directly

with each other simply through the input and output

data they consume and produce. Complex operators

such as Convolution and Dense are supported at the

hardware level with custom state machines, eliminating

the need to decompose these operators into multiple

instructions. Moreover, cores are able to each pass data

directly to subsequent compute nodes without

requiring a router or global scheduler. This enables a

high level of scalability and design efficiency while

streamlining data movement and execution.

MemryX Tower architecture consists of numerous

heterogeneous dataflow cores—called MemryX

Compute Engines (MCEs)—operating independently in

a fully data-driven manner. Control is decentralized,

enabling each MCE to process data as soon as it

becomes available. The MX3 contains two main types

MCEs: MAC cores (M-Cores) and ALU cores (A-Cores).

By dividing the workload among multiple cores, the

MemryX architecture naturally supports space

multiplexing, allowing each neural network layer to be

mapped efficiently and streamed through the dataflow

Figure 1 - Illustration of the dataflow concept used in MemryX tower architecture.

https://memryx.com/

memryx.com

The MemryX Tower Architecture

Page 2 of 12

 © 2025 MemryX Inc., All Rights Reserved

pipeline. MemryX modular dataflow architecture

enables different types of MCEs to be implemented in

the future chips while maintaining necessary

compatibility.

On-chip distributed memories play a central role. Two

key and separate memory types are used: weight

memories that store neural network parameters, and

feature-map memories that hold input, output, and

intermediate data during inference. The feature-map

memory also acts as the communication medium

between processing elements, eliminating the need for

a centralized on-chip memory and enabling software-

defined data pathways. Each core or cluster of cores

writes its partial results to the feature-map memory,

allowing consumer clusters to read from this same

shared buffer. This seamless data exchange reduces

complexity by avoiding direct core-to-core

communication and offers robust scaling options for

larger systems and more complex models.

Cores and memories can be arranged in interleaving

stacks that give rise to the “tower” nomenclature, as

shown in Figure 2. Each compute tower contains an

optimized number of groups of M-Cores and A-Cores

alongside local weight memory, interleaved with

feature-map towers. Every M-Core interfaces with local

weight memory, adjacent feature-map towers, and

neighboring M-Cores. A-Cores similarly interface with

local LUTs (look up tables) and adjacent feature-map

towers. This arrangement is optimized for efficient

dataflow execution, as neural network inputs stream

through multiple layers until reaching the final output.

The MemryX compiler programs the architecture

offline and leverages a streaming execution model.

Cores or clusters of cores are assigned specific tasks,

processing incoming data and passing results forward

in a pipeline. The compiler predetermines both how

each core is programmed and how data flows between

cores, ensuring balanced workload distribution and

data coherence. One key objective is to maintain or

create close producer-consumer relationships,

strategically placing related operations near each other

to maximize efficiency and minimize data movement.

Throughout the rest of this document, we will highlight

how the architecture’s features come together to

enable efficient, scalable, and accurate acceleration of

neural networks on MemryX hardware.

2. Hardware-

Software Codesign
The MemryX tower architecture is designed from the

ground up to be an efficient dataflow platform for AI

workload acceleration. A key design priority is

systematically balancing hardware and software

elements, to achieve optimal utilization and seamless

Figure 2 - Illustration of the tower architecture, showing the interleaving stacks of compute and memory towers.

https://memryx.com/

memryx.com

The MemryX Tower Architecture

Page 3 of 12

 © 2025 MemryX Inc., All Rights Reserved

usability. This co-design approach prioritizes efficient

neural network acceleration while ensuring ease of use

for developers. Through a flexible division of

architectural features between hardware and software

layers, the system attains peak performance and

flexibility.

The steps to achieve an efficient co-design are as

follows:

• Step 1: Architectural Concept and

Mathematical Modeling: In the first phase,

foundational architectural concepts are

introduced based on the overall design goals,

lessons learned from previous designs, and

market needs. These concepts are then

encapsulated in a comprehensive

mathematical model containing hundreds of

equations. Such equations capture both

primary and lower-order properties of the

architecture, providing a precise theoretical

framework that guides subsequent design

phases.

• Step 2: Architecture Tool: Next, the equations

derived from the mathematical model are

encoded into an analytical solver tool. This tool

accepts various inputs—such as hardware

constraints and the broad properties of target

AI models, including layer counts and

operators per layer—and solves them under

these constraints to uncover an optimal design

point. This stage often leads to the discovery

and refinement of additional architectural

features or design strategies, further

optimizing performance and efficiency (see

Section 4 for details).

• Step 3: Detailed Modeling and Functional

Compiler: Once the core architectural data has

been finalized, a detailed SystemC model is

created. This model goes beyond the

mathematical equations to incorporate higher-

order considerations, such as memory

arbitration and latency details. In parallel, a

functional compiler is developed to target the

SystemC model as its backend. This compiler

operates with bit accuracy akin to the final

hardware, while the timing is sufficiently

estimated to be within ~10% of the chip’s

actual performance. Using this compiler and

SystemC model, AI workloads are compiled

and validated to ensure they meet the targeted

levels of accuracy, performance, and utilization.

Should these goals fall short, new hardware or

software features are introduced and iteratively

tested.

• Step 4: Microarchitecture Design and

Finalization: By step 4, the architecture is

stable enough for detailed microarchitecture

design and front-end development. The

SystemC model remains the default backend

for the compiler until the chip is fully

fabricated, acting as a reliable reference for

ongoing development. As the compiler

continues to evolve, it expands its feature set

and performance optimizations while

maintaining a solid hardware-software

foundation. This holistic, iterative process

ensures that the MemryX tower architecture

delivers on its promise of efficient, user-

friendly AI acceleration.

Throughout the remainder of this document, we will

emphasize the principles of hardware/software co-

design as we explore the architecture’s key features.

3. Design for

Scalability
A key aspect of our design philosophy is modularity

and autonomy in the compute elements. By relying on

a distributed-control, dataflow approach in both cores

and memories, the MemryX architecture becomes

inherently scalable. The size of the chip—along with

its computational power—can now be treated as a

target-market choice rather than a rigid architectural

constraint, enabling efficient scaling to create the right

https://memryx.com/

memryx.com

The MemryX Tower Architecture

Page 4 of 12

 © 2025 MemryX Inc., All Rights Reserved

level of performance for a given application, from

battery powered devices to data center applications.

The MX3 design target was Edge AI applications such

as industrial applications, security systems, Edge

Servers, robotics, and more.

Moreover, this distributed-control concept extends

beyond the chip level. Multiple MemryX chips can be

cascaded within a single module, appearing to

developers and users as a single larger logical device,

as shown in Figure 3. Communication between these

chips operates autonomously, with no host

intervention required. The compiler automatically

distributes workloads across the combined resources,

treating them as a unified accelerator while each chip

continues to function independently. Aside from

ensuring data validity, there is virtually no

synchronization overhead between chips, further

enhancing both scalability and reliability in a wide

range of deployment scenarios.

4. Design for

Efficiency
Designing the architecture for efficiency means doing

more with less. A solid design should extract the

highest performance from the fewest resources.

Accordingly, we strive to minimize chip area, overall

power, cost, and design complexity, while

simultaneously maximizing performance (frames per

second), hardware utilization, model coverage

(operator support), target applications, and ease of

use.

Although the architecture is built on innovative

principles (discussed throughout this document), these

alone are insufficient for an efficient design. We must

carefully determine how many compute units (MCEs)

and memory blocks to instantiate, and how to organize

and interconnect these resources. These architectural

decisions profoundly influence performance and

efficiency and must be made systematically.

Balancing Compute and Memory

Bandwidth

Neural network inference primarily relies on

vector/matrix multiply-and-accumulate (MAC)

operations, implemented in our architecture via

efficient fused multiply-adder blocks. Each MAC

multiplies a feature map value by a weight value and

adds the result to a running partial sum. To generate a

single output value, numerous MAC operations are

performed. A network layer computes many such

values to form a complete feature map, and multiple

layers work together to produce the final network

output, resulting in millions or even billions of

computations per inference.

While each output computation is generally

independent, allowing parallel processing via multiple

MAC units in a SIMD-like fashion, simply adding more

compute can become wasteful if data (weights and

feature-map values) cannot be supplied quickly

enough from memory. Excess MAC units would remain

idle, occupying chip area and power without boosting

performance. Maintaining an optimal balance

between memory and compute is crucial. Too many

MAC units may cause the architecture to hit a memory

Figure 3 - Illustration of MemryX scaling, from left to right: a single chip (left), multiple chips cascaded to

form a larger logical device (center), and a physically bigger chip (right). This approach enables performance

scaling both at the individual chip level and across interconnected modules.

https://memryx.com/

memryx.com

The MemryX Tower Architecture

Page 5 of 12

 © 2025 MemryX Inc., All Rights Reserved

wall, where insufficient memory bandwidth leads to

compute starvation. However, data reuse and other

architectural techniques help mitigate bandwidth

limitations by maximizing efficient usage of available

memory resources, as shown in Figure 4.

The MemryX architecture balances memory bandwidth

and compute to ensure high utilization. We achieve

greater bandwidth by using on-chip distributed and

segregated memories (see Section 5). High utilization

combined with significant on-chip memory bandwidth

enables MemryX architecture to outperform alternative

architecture with much higher TOPS. In fact, the MX3

outperforms many AI computing systems with >10X

more quoted peak TOPS.

Choosing an Optimal Design Point

We systematically determine the number and

organization of MCEs, as well as the size, bandwidth,

and hierarchy of on-chip memory. Balancing these

elements is challenging due to the higher-order

interdependencies of a dataflow-centric system. To

address this, we encode our architectural innovations

into a large system of equations representing the

accelerator’s behavior at a high level. We then

constrain this system using cost, performance, and

power targets, referencing a pool of representative

neural network models to capture typical operations,

memory needs, and operator support. With properly

specified parameters, the system can be solved to yield

an optimal or near-optimal balanced design point.

Once we arrive at this balanced design, we validate our

choices using a co-designed architecture simulator and

neural compiler, running real-world models to evaluate

utilization and performance. Through iterative

refinements—adjusting constraints and implementing

improvements—we approach an optimal configuration

(see Section 2 for details). The MemryX scalable

hierarchy (MCE → MCE-Groups → Compute-Towers

→ MXAs) further organizes workloads across the chip.

As a result, we can often deliver higher performance

than competing solutions even with MemryX having far

fewer raw compute elements, since our utilization is

inherently more efficient.

5. Distributed

Memory
Over the past few decades, the performance of

processors has increased significantly, outpacing the

improvements in memory performance. This growing

disparity, often referred to as the “memory wall,” has

led to situations where the speed of computation is

limited by the slower rate of data retrieval from

memory. Traditional computer architectures use a

hierarchical caching mechanism to exploit spatial and

Figure 4 - An example illustrating how adjusting core granularity influences feature-map and weight data

bandwidth as well as data reuse—just one among hundreds of interconnected design parameters in the system.

https://memryx.com/

memryx.com

The MemryX Tower Architecture

Page 6 of 12

 © 2025 MemryX Inc., All Rights Reserved

temporal locality of program memory, aiming to hide

the discrepancy between the speed of compute and

the speed of data movement. However, the parameter

counts of neural network workloads often exceed

typical cache sizes, so locality becomes more difficult

to exploit, and the throughput of the compute system

becomes directly correlated with its memory

bandwidth. Moreover, moving data from a distant

source like DRAM consumes an order of magnitude

more energy than the actual computation. Our

architecture employs three main innovations to

overcome these limitations.

First, we elect to use on-chip memory, thereby

eliminating costly DRAM fetches and doing away with

expensive off-chip interfaces. On-chip memory

provides the necessary bandwidth, low latency, and

minimal read power required to move relatively large

parameter sets quickly and efficiently to the compute

units. This also circumvents the overhead of memory

caching hierarchies in which data must pass through

multiple levels of memories before finally reaching the

compute, resulting in many unnecessary reads/writes

and wasted energy.

Second, we elect to distribute the memory across the

chip, co-locating memory and compute units as

opposed to having large caches separated from large

compute clusters. By minimizing the distance between

memory and compute, we greatly reduce the energy

cost and routing complexities associated with the

computation of a Neural Network. Incorporating

distributed on-chip memory gives us the flexibility

when designing the architecture to balance the

compute throughput and memory bandwidth much

more effectively than traditional architectures. This is

because the number of memory blocks, their relative

size, and the read-width / ports can be tuned to fit our

needs.

Third, we separate the two flavors of memory that

appear in neural networks:

• Parameters – Used to compute the inference

results of a compute node (generally read-

only).

• Feature Maps – Used to communicate

inference results between compute nodes

(frequently read and written).

Segregating these memory types allows us to leverage

their unique properties. Parameter memory generally

belongs to a single layer and is read-only, while

feature-map memory is shared among multiple layers

and experiences continuous reads and writes. We place

parameter memory within MCE-Groups and feature-

map memory between MCE-Groups. In doing so,

weight memory can serve the cores within its group

directly, whereas feature-map memory handles inter-

layer communication. We further leverage memory

specialization by optimizing the types of memory and

their characteristics to better suite their role. For

example, we can opt for high-density, read-optimized

memory blocks for the parameter memory. In contrast,

we employ mutli-port memories with equal read/write

speeds for the feature map memories to serve as the

Inter-Layer communication fabric (see Section 7 for

details).

Finally, the unique memory principals that underline

our architecture means we are positioned to leverage

new and emerging memory technologies that align

with these types of workloads. Breakthroughs in Neural

Network optimized RRAM or MRAM technologies can

be easily incorporated into our architecture leveraging

the higher-density, read-oriented, and non-volatile

nature of these technologies.

6. Dataflow Cores
The MCEs are the compute cores designed from the

ground-up for the MemryX dataflow architecture. Their

designs are focused on three key aspects:

1. No Instruction Fetch: In traditional control-flow

architectures, each core must fetch both data and

instructions. By contrast, the MCEs operate

autonomously, relying on configuration registers and

state machines instead of typical instructions. This

approach eliminates instruction-fetch overhead and

frees memory bandwidth for data transfers.

https://memryx.com/

memryx.com

The MemryX Tower Architecture

Page 7 of 12

 © 2025 MemryX Inc., All Rights Reserved

2. Asynchronous Submodules: Consistent with the

broader MemryX architecture, MCEs are data-driven

and feature no centralized control. Each core is

divided into three independently-operating

submodules or “stages”:

• Data Fetch: The “front” of the core, it retrieves

one feature map from on-chip memory and, if

needed, weights from weight memory. It also

manages Inter-Layer Communication (ILC)

transactions. In a compute cluster, a core can

also read data from nearby cores within the

same Core Group.

• Compute: Fetched data is then passed to the

Compute stage, which executes the assigned

operation (e.g., Convolution, Addition).

Meanwhile, the Fetch stage is free to continue

work asynchronously, retrieving the next

required data. When the Compute stage

finishes its operations, it hands its results to

the Writeback stage.

• Writeback: Receives processed feature-map

data from the Compute stage, writes it back to

feature-map memory, and completes any

remaining ILC operations.

3. Deterministic Execution: The deterministic nature

of the cores is vital for role within the overall dataflow

architecture. The number of cycles each core takes to

Fetch, Compute, and Writeback is carefully controlled

in order to fall within expected memory read/write

latencies. This deterministic design allows the Neural

Compiler to accurately predict performance when

mapping neural networks to the accelerator, and

allocate resources accordingly.

Heterogeneous Cores

While a single, general-purpose core design could

simplify software mapping, it risks having “idle silicon”

if seldom-used features occupy chip area. To address

this, MemryX employs a minimally heterogeneous

design with specialized core types each focusing on

different sets of operations that typically do not

overlap (See Figure 5).

M-Core (MAC Core): The M-Core is a high-

throughput vector/matrix compute core specialized for

feature-map-by-weight operations, such as

Convolution, Dense (Linear) layers, and striding window

functions (e.g., Pooling, Upsampling). It can also handle

common activation functions. Rather than using

sequential instructions, the M-Core’s ISA is parameter-

based, relying on state machines that count to

configured thresholds. This design allows the M-Core

to dedicate most of its power and area to multiply-

accumulate (MAC) units, maximizing throughput for

core neural-network operations. A set of configuration

registers defines the operation type, feature-

map/kernel shapes, strides, pooling properties, and

Figure 5 - A top-level view of the M-Core and A-Core organizations, highlighting the three stages (Data Fetch,

Compute, Writeback) and illustrating how each core type connects to memory resources and adjacent cores.

https://memryx.com/

memryx.com

The MemryX Tower Architecture

Page 8 of 12

 © 2025 MemryX Inc., All Rights Reserved

memory addresses. Once set, the M-Core runs

autonomously, counting up to the specified limits and

taking appropriate actions when those counts are

reached.

A-Core (ALU Core): The A-Core handles feature-map-

by-feature-map operations (e.g., Add, Multiply, Concat)

and specialized arithmetic (Reciprocals, Softmax, LUT-

based approximations). Its microarchitecture shares

similar Fetch and Writeback stages with the M-Core,

but the Compute stage differs significantly. In

Compute, the A-Core uses a RISC-like ISA with

instructions and data registers, along with LookUp

Tables (LUTs) for approximating complex functions. All

instructions are stored in configuration registers within

each A-Core instead of an external SRAM, eliminating

instruction-fetch overhead and allowing flexible

chaining of simple operations into more complex ones.

By pairing M-Cores with A-Cores, MemryX achieves a

balanced hardware solution. This arrangement

prevents unnecessary resource usage, avoids idle

hardware, and maintains high efficiency across diverse

neural network operators.

Graph Engine

Building on the strengths of the heterogeneous cores,

the MemryX architecture natively supports a key set of

hardware-accelerated operators (e.g., Convolution,

Dense, Pooling, Add). Moreover, operator fusion

techniques allow us to merge frequently adjacent

operations (e.g., Convolution + BiasAdd + Activation),

drastically reducing memory reads and writes.

However, this hardware configurability must be

carefully balanced against area, power, and complexity

constraints. Therefore, MemryX leverages sophisticated

graph processing to extend the range of supported

operators through software. The Graph Processing

Layer in the Neural Compiler, co-developed with the

hardware, has deep insights into the capabilities of

MCEs.

The graph engine iteratively applies various

transformations to optimize the compute graph for

the MemryX architecture. These transformations

include fusion (combining adjacent operators into a

single node), conversion (mapping unsupported

operations to equivalent, hardware-friendly ones),

decomposition (breaking complex operators into

simpler sub-operations), recomposition (merging

multiple sub-operations into a single high-level

function), reordering (altering operation order for

greater efficiency), and approximation (using simpler

algorithms or LUT-based methods when direct

hardware support is lacking). By applying these steps,

the graph engine maximizes performance and

extends operator support well beyond the raw

hardware features—allowing a broad array of neural

networks to run efficiently on MemryX accelerators

while provide very high accuracy outputs.

While some of graph optimization steps, such as batch

normalization fusion, are generally hardware

independent, a majority of the graph processing steps

are implemented to specifically optimize neural

network execution on the MXA. Our custom Neural

Compiler and MXA architecture were co-designed, so

the hardware DNA is tightly encoded into our software

stack, allowing us to achieve maximal utilization of the

MXA hardware.

7. Through Memory

Communication
A typical neural network model can be represented as

a compute graph, with each layer’s output (the feature

map) serving as input to one or more subsequent

layers. When this graph is mapped onto MemryX

hardware (MXA), the workload is distributed across

multiple MCEs (see Section 8 for details). Each core or

compute cluster acts as a consumer of feature-map

data originating a producer upstream core/cluster,

while its own outputs can serve as inputs to another

downstream cluster. This producer–consumer

paradigm defines how data flows throughout the

MemryX architecture.

https://memryx.com/

memryx.com

The MemryX Tower Architecture

Page 9 of 12

 © 2025 MemryX Inc., All Rights Reserved

Reservoir Concept

To facilitate communication between clusters, MemryX

employs a shared feature-map memory buffer,

allowing the producer to write data and the consumer

to read it directly—no router or on-chip network is

required. A sophisticated inter-layer-communication

module (ILC) manages data synchronization: for

instance, a consumer cannot begin computing until the

producer has generated enough data. The ILC enforces

this by preventing data fetches in the consumer until

the producer has finished writing.

In a less sophisticated design, a producer cluster would

generate an entire feature map before any consumer

could start. This approach is inefficient in both time

and space, as it demands large buffers for intermediate

feature maps and blocks the consumer from running

while the producer is still active. By contrast, MemryX

exploits neural network properties to enable adjacent

clusters to work simultaneously, as illustrated in

Figure 6. Once enough data is available, the ILC allows

the consumer to begin processing while the producer

continues operating on the rest of the data. Carefully

structuring the order of computation discards data that

is no longer needed, significantly reducing the memory

footprint for intermediate feature maps.

Adjacency

While the ILC reservoir concept offers a

straightforward and efficient way for MCEs to exchange

data in a dataflow manner, it does rely on the

assumption that both producer and consumer cores

share access to the same feature-map tower. This

requirement implies an adjacency between cores that

need to communicate. However, in more complex

neural networks or computational graphs direct

adjacency is not always possible since far-apart layers

may need to exchange data.

This is where software-hardware splitting comes into

play (see Section 2). Instead of relying on a full on-chip

network or router-based approach, short-distance

(adjacent) communication is handled locally by the ILC

reservoir as discussed. Meanwhile, long-distance

communication is addressed at compile time through

the mapper’s place-and-route mechanisms. Whenever

preserving direct adjacency is not feasible, the compiler

can insert lightweight bypass nodes in the dataflow

graph, as shown in Figure 7. These bypass nodes

ensuring the adjacency requirement is met—even

when layers must be placed far apart.

The compiler may also choose to create adjacency

rather than merely preserve it if doing so results in a

more optimal placement, routing, or performance

Figure 6 - Illustration of the ILC reservoir concept in three modes of operation: (1) Pipeline fill (left): The consumer

must wait for the producer to generate sufficient data. A similar scenario occurs in unplanned workload situations

where the producer generates data at a slower rate than the consumer. (2) Optimal concurrency (middle): Both

producer and consumer operate in parallel while data remains within the reservoir’s minimum and maximum

thresholds. (3) Faster producer (right): The producer outpaces the consumer. This can also occur due to

backpressure from the consumer output.

https://memryx.com/

memryx.com

The MemryX Tower Architecture

Page 10 of 12

 © 2025 MemryX Inc., All Rights Reserved

outcome. For example, the mapper might position a

layer farther away in order to assign more compute

cores, if overall performance benefits by inserting the

additional bypass nodes.

Flow Simulator

The first two aspects of data movement—ILC and

adjacency—lay the groundwork for transferring data

across the tower architecture. Another key factor is the

buffer size that must be allocated to each producer–

consumer pair, along with the corresponding ILC

parameters. Because on-chip feature-map memory is

limited, these allocations must be carefully computed.

For instance, one consumer might process multiple

rows at once, while another handles just a single row;

the producer might overwrite data only after it has

been fully consumed.

The compiler applies a set of equations to determine

each buffer’s size and ILC settings, enabling

concurrent rather than step-locked operation. More

intricate structures, like branch-and-merge or nested

loops (which are common in modern neural networks),

can risk deadlock if a branch runs faster than the rest

and lacks sufficient buffering. To address these issues, a

Flow Simulator detects hazards—such as potential

deadlocks—and assigns extra buffer resources or

reorders tasks to maintain smooth pipeline

performance. It also helps reduce stalls (bubbles),

balance throughput across branches, and minimize

memory access conflict.

In scenarios with large feature-map requirements, the

compiler can revert certain producer–consumer

interactions to step-lock mode. While this lowers peak

performance, it ensures that high-memory workloads

fit within available resources, striking a practical

balance between efficiency and real-world constraints.

8. Workload

Distribution
Workload distribution is pivotal to the MemryX tower

architecture. By leveraging hardware flexibility and

advanced compiler techniques, neural network layers

can be split and mapped across multiple MCEs to

maximize performance and resource utilization. Within

a dataflow paradigm, every layer (or computational

graph node) functions as both a producer and a

consumer (see Section 7 for details).

At a higher level, the MemryX compiler transforms the

original neural network (or multiple neural networks)

into an enhanced graph (See Section 6 - Graph

engine), where workload is assigned to a group of

MCEs—known as a compute cluster. The compiler

decides not only how many cores to allocate to each

cluster but also how to distribute the workload among

those cores, selecting from various techniques based

on both the layer’s properties (e.g., dimensions,

channel count) and hardware specifications (e.g.,

weight memory bandwidth).

Distribution Strategies

1. Output-channel distribution: One fundamental

approach is output-channel distribution, where each

MCE computes a subset of the output channels across

Figure 7 - A diagram illustrating how the compiler can preserve adjacency by placing the consumer in the same

or an adjacent feature-map tower, or create adjacency through a lightweight bypass node when layers must be

placed farther apart.

https://memryx.com/

memryx.com

The MemryX Tower Architecture

Page 11 of 12

 © 2025 MemryX Inc., All Rights Reserved

all spatial dimensions (see Figure 8). Because cores do

not directly exchange weight or intermediate data,

synchronization overhead is minimal—only coarse-

grained ILC producer/consumer checks are required.

This strategy often excels for layers with many output

channels.

2. Pixel workers: Another method is pixel workers,

where each core processes part of the spatial

dimensions for all output channels. Rather than every

core fetching the same weights, only the topmost core

in a chain retrieves them and passes the data along.

Each subsequent core reuses these weights for its

assigned pixels, significantly reducing weight-memory

traffic (see Figure 8). While highly effective for layers

with large spatial dimensions, it may be less suitable for

operations that produce only a few output pixels.

3. Compound distribution: A third option is

compound distribution, which merges channel-slicing

and pixel distribution. The layer is split into sub-layers

(or slices of output channels), each further divided into

pixel-driven tasks for a group of cores. This method

enables MemryX to handle deeper, more complex

layers by sharing weight data where it’s most

beneficial, and can even scale across multiple MCE

groups or chips. Additional techniques—such as input

channel–based distribution—may also be used,

depending on the network architecture.

Crucially, all these distribution strategies are

orchestrated by the MemryX compiler, which uses an

equation-based model and an optimizer that

iteratively refines each layer’s mapping. The compiler’s

objective is to sustain high utilization across MCEs,

avoid memory bottlenecks, and reduce unnecessary

data movement.

9. Hybrid Precision

Compute
Throughout this document, we have emphasized the

performance and ease of use of the MemryX

architecture. Another vital consideration is accuracy.

Many accelerators on the market adopt fully INT8

computations for speed, which can be fine for static

parameters (weights) because they can be quantized

offline. However, extending INT8 to feature-map data,

which is inherently dynamic and depends on real-time

inputs, introduces a significant challenge. Such

accelerators often require a “tuning” phase with a

representative dataset to establish scaling factors, and

even then, accuracy can deteriorate if actual inputs

differ from the tuning data. This process also

complicates deployment, as collecting and tuning with

real-world data becomes an extra step—and the results

are only as reliable as the data used.

An alternative to INT8 is to store feature-map data in a

floating-point format (e.g., BF16), preserving the

network’s dynamic range and accuracy. Unfortunately,

BF16 effectively doubles the memory bandwidth and

storage requirements compared to INT8, leading most

solutions to offer either fast INT8 paths or slower

Figure 8 - Illustration of two workload distribution strategies for a single neural network layer: output-channel

distribution (left), where each core handles a subset of output channels, and pixel workers (right), where each core

processes distinct spatial regions using shared weight data. Notably, in pixel-worker mode, only one core needs

direct access to the weight memory, thereby preserving memory bandwidth.

https://memryx.com/

memryx.com

The MemryX Tower Architecture

Page 12 of 12

 © 2025 MemryX Inc., All Rights Reserved

floating-point options—or in many edge accelerators,

only INT8 capabilities. Users are then forced to choose

between sacrificing accuracy or accepting reduced

throughput.

MemryX offers an optimized solution using Group-

BFloat, a specialized format for feature-map data.

Group-BFloat provides sufficient dynamic range, similar

to BF16, but shares the exponent across multiple

mantissas, as shown in Figure 9. This arrangement

substantially reduces bandwidth and storage overhead

while still accommodating the variability of neural

network feature maps. Although sharing an exponent

may not be ideal for every general-purpose use case, it

aligns effectively with the statistical behavior of neural

network activations. Furthermore, this is a parameter

designed to be overridden should even higher

precision be required for specific layers.

When Group-BFloat is used for feature-map data

alongside quantized weights, the MemryX tower

architecture delivers the best of both worlds. This

combination not only achieves performance levels on

par with an INT8/INT8 pipeline but also preserves

accuracy comparable to traditional floating-point

computations.

Efficient MAC

To realize these hybrid precision operations in

hardware, each MemryX Core Engine (MCE) relies on

multiply-accumulate (MAC) units at its computational

core. A MAC unit accepts weight values, stored

primarily in INT8 or INT4 (though INT16/INT32 are also

supported via software layers) and input activations in

Group-BFloat format. It multiplies these inputs and

accumulates the resulting partial sums in an internal

register. In many cases, the MAC sums tens of

thousands of such products before producing its final

output. By adjusting the sequence in which weights

and activations are fed to the MAC, the same hardware

can efficiently handle various vector/matrix operations.

Within the current generation, INT8 remains the default

weight format, while INT4 halves memory usage (or

doubles parameter capacity) but may introduce

additional accuracy considerations. Meanwhile, Group-

BFloat is the format used for input activations, sharing

an exponent across multiple pixels to reduce

bandwidth and storage requirements. Because the

MAC sits at the heart of each MCE’s compute

capabilities, its design is pipelined for high

throughput, delivering two floating-point operations (a

multiply and an add) per clock cycle. By leveraging a

shared exponent in the Group-BFloat format, certain

logic can be reused, further reducing power

consumption and silicon area.

10. Summary
The current generation of the MemryX tower

architecture introduces innovative dataflow

principles that enable a highly efficient, easy-to-use

edge AI accelerator. By co-designing both hardware

and software, MemryX achieves a balanced partition of

features between silicon and the compiler/tooling

layers. Through modular, distributed control and on-

chip distributed memories, the system attains scalable

performance with minimal off-chip data transfers and

high resource utilization.

In this document, we followed a top-down narrative to

explore the high-level concepts behind the MemryX

tower architecture—from dataflow execution and

hybrid precision strategies to heterogeneous cores and

distributed memory. These insights provide a deeper

understanding of how and why MemryX chips are

designed, offering both developers and advanced users

a clear view of the architectural decisions that enable

MemryX products to excel.

Figure 9 - Group-BFloat format balances memory efficiency and accuracy by sharing an exponent across multiple

mantissas, reducing bandwidth and storage overhead while maintaining dynamic range.

https://memryx.com/

	1. Introduction
	2. Hardware-Software Codesign
	3. Design for Scalability
	4. Design for Efficiency
	Balancing Compute and Memory Bandwidth
	Choosing an Optimal Design Point

	5. Distributed Memory
	6. Dataflow Cores
	Heterogeneous Cores
	Graph Engine

	7. Through Memory Communication
	Reservoir Concept
	Adjacency
	Flow Simulator

	8. Workload Distribution
	Distribution Strategies

	9. Hybrid Precision Compute
	Efficient MAC

	10. Summary

