Supported Neural Network Operators#

Neural network operators can be directly supported by the hardware, decomposed into hardware-compatible components, or approximated. While the hardware-supported operators only change with new chip generations, the coverage of decomposed and approximated operators increases with each new software release. This page lists the latest support for operators across various neural network frameworks.

keras.activations.elu
keras.activations.exponential
keras.activations.gelu
keras.activations.linear
keras.activations.relu
keras.activations.selu
keras.activations.sigmoid
keras.activations.softmax
keras.activations.softplus
keras.activations.softsign
keras.activations.swish
keras.activations.tanh
keras.layers.Activation
keras.layers.Add

Reference: keras.layers.Add

keras.layers.AlphaDropout
keras.layers.Attention
keras.layers.AveragePooling1D
keras.layers.AveragePooling2D
keras.layers.AveragePooling3D
keras.layers.Average
keras.layers.BatchNormalization
keras.layers.Concatenate
keras.layers.Conv1DTranspose
keras.layers.Conv1D

Reference: keras.layers.Conv1D

keras.layers.Conv2DTranspose
keras.layers.Conv2D

Reference: keras.layers.Conv2D

keras.layers.Conv3DTranspose
keras.layers.Conv3D

Reference: keras.layers.Conv3D

keras.layers.Cropping1D
keras.layers.Cropping2D
keras.layers.Cropping3D
keras.layers.Dense

Reference: keras.layers.Dense

keras.layers.DepthwiseConv1D
keras.layers.DepthwiseConv2D
keras.layers.Dot

Reference: keras.layers.Dot

keras.layers.Dropout
keras.layers.ELU

Reference: keras.layers.ELU

keras.layers.Flatten
keras.layers.GaussianDropout
keras.layers.GaussianNoise
keras.layers.GlobalAveragePooling1D
keras.layers.GlobalAveragePooling2D
keras.layers.GlobalAveragePooling3D
keras.layers.GlobalMaxPooling1D
keras.layers.GlobalMaxPooling2D
keras.layers.GlobalMaxPooling3D
keras.layers.InputLayer
keras.layers.LayerNormalization
keras.layers.LeakyReLU
keras.layers.LeakyReLU
keras.layers.MaxPooling1D
keras.layers.MaxPooling2D
keras.layers.MaxPooling3D
keras.layers.Maximum
keras.layers.Minimum
keras.layers.MultiHeadAttention
keras.layers.Multiply
keras.layers.Normalization
keras.layers.PReLU

Reference: keras.layers.PReLU

keras.layers.Permute
keras.layers.ReLU

Reference: keras.layers.ReLU

keras.layers.RepeatVector
keras.layers.Rescaling
keras.layers.Reshape
keras.layers.SeparableConv1D
keras.layers.SeparableConv2D
keras.layers.Softmax
keras.layers.SpatialDropout1D
keras.layers.SpatialDropout2D
keras.layers.SpatialDropout3D
keras.layers.Subtract
keras.layers.UpSampling1D
keras.layers.UpSampling2D
keras.layers.UpSampling3D
keras.layers.ZeroPadding1D
keras.layers.ZeroPadding2D
keras.layers.ZeroPadding3D
keras.src.ops.nn.Sigmoid
keras.src.ops.numpy.GetItem
Abs

Reference: Abs

Acos

Reference: Acos

Acosh

Reference: Acosh

Asin

Reference: Asin

Asinh

Reference: Asinh

Atan

Reference: Atan

Atanh

Reference: Atanh

AveragePool

Reference: AveragePool

BatchNormalization

Reference: BatchNormalization

Cast

Reference: Cast

Ceil

Reference: Ceil

Celu

Reference: Celu

Clip

Reference: Clip

Concat

Reference: Concat

Constant

Reference: Constant

ConvTranspose

Reference: ConvTranspose

Conv

Reference: Conv.

Note:

Cos

Reference: Cos

Cosh

Reference: Cosh

DepthToSpace

Reference: DepthToSpace

Notes:

DequantizeLinear

Reference: DequantizeLinear

Div

Reference: Div

Dropout

Reference: Dropout

Elu

Reference: Elu

Exp

Reference: Exp

Expand

Reference: Expand.

FastGelu

Reference: FastGelu

Flatten

Reference: Flatten

Floor

Reference: Floor

Gelu

Reference: Gelu

Gemm

Reference: Gemm

Note:

GlobalAveragePool

Reference: GlobalAveragePool

GlobalMaxPool

Reference: GlobalMaxPool

GreaterOrEqual

Reference: GreaterOrEqual

Greater

Reference: Greater

HardSigmoid

Reference: HardSigmoid

HardSwish

Reference: HardSwish

Identity

Reference: Identity

InstanceNormalization
LRN

Reference: LRN

LayerNormalization

Reference: LayerNormalization

LeakyRelu

Reference: LeakyRelu

LessOrEqual

Reference: LessOrEqual

Less

Reference: Less

Log

Reference: Log

MatMul

Reference: MatMul

MaxPool

Reference: MaxPool

Mish

Reference: Mish

Mod

Reference: Mod

Neg

Reference: Neg

Not

Reference: Not

PRelu

Reference: PRelu

Pad

Reference: Pad

Pow

Reference: Pow

QLinearConv

Reference: QLinearConv

QuantizeLinear

Reference: QuantizeLinear

Reciprocal

Reference: Reciprocal

Relu

Reference: Relu

Reshape

Reference: Reshape

Resize

Reference: Resize

There

Round

Reference: Round

Selu

Reference: Selu

Sigmoid

Reference: Sigmoid

Sign

Reference: Sign

Sin

Reference: Sin

Sinh

Reference: Sinh

Slice

Reference: Slice

Softmax

Reference: Softmax

Softplus

Reference: Softplus

Softsign

Reference: Softsign

SpaceToDepth

Reference: SpaceToDepth

Split

Reference: Split

Notes:

Sqrt

Reference: Sqrt

Squeeze

Reference: Squeeze

Sub

Reference: Sub

Tan

Reference: Tan

Tanh

Reference: Tanh

ThresholdedRelu

Reference: ThresholdedRelu

Tile

Reference: Tile

Transpose

Reference: Transpose

Unsqueeze

Reference: Unsqueeze

Upsample

Reference: Upsample

Abs

Reference: Abs

AddN

Reference: AddN

AddV2

Reference: AddV2

Add

Reference: Add

AvgPool

Reference: AvgPool

BiasAdd

Reference: BiasAdd

Cast

Reference: Cast

ConcatV2

Reference: ConcatV2

Concat

Reference: Concat

Const

Reference: Const

Conv2DBackpropInput

Reference: Conv2DBackpropInput

Conv2D

Reference: Conv2D

Conv3D

Reference: Conv3D

DepthToSpace

Reference: DepthToSpace

DepthwiseConv2dNative
Exp

Reference: Exp

ExpandDims

Reference: ExpandDims

FusedBatchNorm

Reference: FusedBatchNorm

IdentityN

Reference: IdentityN

Identity

Reference: Identity

LeakyRelu

Reference: LeakyRelu

MatMul

Reference: MatMul

MaxPool

Reference: MaxPool

Max

Reference: Max

Maximum

Reference: Maximum

Mean

Reference: Mean

Minimum

Reference: Minimum

MirrorPad

Reference: MirrorPad

Mul

Reference: Mul

Neg

Reference: Neg

NoOp

Reference: NoOp

Pack

Reference: Pack

Pad

Reference: Pad

Pow

Reference: Pow

RealDiv

Reference: RealDiv

Relu6

Reference: Relu6

Relu

Reference: Relu

Reshape

Reference: Reshape

ResizeBilinear

Reference: ResizeBilinear

ResizeNearestNeighbor
Rsqrt

Reference: Rsqrt

Selu

Reference: Selu

Sigmoid

Reference: Sigmoid

Softmax

Reference: Softmax

Softsign

Reference: Softsign

Split

Reference: Split

Sqrt

Reference: Sqrt

Square

Reference: Square

SquaredDifference

Reference: SquaredDifference

Squeeze

Reference: Squeeze

StopGradient

Reference: StopGradient

StridedSlice

Reference: StridedSlice

Sub

Reference: Sub

Tanh

Reference: Tanh

Tile

Reference: Tile

Transpose

Reference: Transpose

keras.activations.elu
keras.activations.exponential
keras.activations.gelu
keras.activations.linear
keras.activations.relu
keras.activations.selu
keras.activations.sigmoid
keras.activations.softmax
keras.activations.softplus
keras.activations.softsign
keras.activations.swish
keras.activations.tanh
keras.layers.Activation
keras.layers.Add

Reference: keras.layers.Add

keras.layers.AlphaDropout
keras.layers.Attention
keras.layers.AveragePooling1D
keras.layers.AveragePooling2D
keras.layers.AveragePooling3D
keras.layers.Average
keras.layers.BatchNormalization
keras.layers.Concatenate
keras.layers.Conv1DTranspose
keras.layers.Conv1D

Reference: keras.layers.Conv1D

keras.layers.Conv2DTranspose
keras.layers.Conv2D

Reference: keras.layers.Conv2D

Notes:

  • kernel_size <= input_size

keras.layers.Conv3DTranspose
keras.layers.Conv3D

Reference: keras.layers.Conv3D

keras.layers.Cropping1D
keras.layers.Cropping2D
keras.layers.Cropping3D
keras.layers.Dense

Reference: keras.layers.Dense

keras.layers.DepthwiseConv1D
keras.layers.DepthwiseConv2D
keras.layers.Dot

Reference: keras.layers.Dot

keras.layers.Dropout
keras.layers.ELU

Reference: keras.layers.ELU

keras.layers.Flatten
keras.layers.GaussianDropout
keras.layers.GaussianNoise
keras.layers.GlobalAveragePooling1D
keras.layers.GlobalAveragePooling2D
keras.layers.GlobalAveragePooling3D
keras.layers.GlobalMaxPooling1D
keras.layers.GlobalMaxPooling2D
keras.layers.GlobalMaxPooling3D
keras.layers.InputLayer
keras.layers.LayerNormalization
keras.layers.LeakyReLU
keras.layers.Linear

Reference: keras.layers.Linear

keras.layers.MaxPooling1D
keras.layers.MaxPooling2D
keras.layers.MaxPooling3D
keras.layers.Maximum
keras.layers.Minimum
keras.layers.MultiHeadAttention
keras.layers.Multiply
keras.layers.Normalization
keras.layers.PReLU

Reference: keras.layers.PReLU

keras.layers.Permute
keras.layers.ReLU

Reference: keras.layers.ReLU

keras.layers.RepeatVector
keras.layers.Rescaling
keras.layers.Reshape
keras.layers.SeparableConv1D
keras.layers.SeparableConv2D
keras.layers.Softmax
keras.layers.SpatialDropout1D
keras.layers.SpatialDropout2D
keras.layers.SpatialDropout3D
keras.layers.Subtract
keras.layers.TensorFlowOpLayer
keras.layers.ThresholdedReLU
keras.layers.UpSampling1D
keras.layers.UpSampling2D
keras.layers.UpSampling3D
keras.layers.ZeroPadding1D
keras.layers.ZeroPadding2D
keras.layers.ZeroPadding3D
abs

Reference: ABS

add

Reference: ADD

add

Reference: ADD

Operation

average_pool_2d

Reference: AVERAGE_POOL_2D

batch_to_space_nd

Reference: BATCH_TO_SPACE_ND

broadcast_args

Reference: BROADCAST_ARGS

broadcast_to

Reference: BROADCAST_TO

cast

Reference: CAST

ceil

Reference: CEIL

concatenation

Reference: CONCATENATION

conv_2d

Reference: CONV_2D

conv_3d_transpose

Reference: CONV_3D_TRANSPOSE

conv_3d

Reference: CONV_3D

cos

Reference: COS

densify

Reference: DENSIFY

Operation

depthwise_conv_2d

Reference: DEPTHWISE_CONV_2D

depth_to_space_nd

Reference: DEPTH_TO_SPACE_ND

dequantize

Reference: DEQUANTIZE

div

Reference: DIV

elu

Reference: ELU

equal

Reference: EQUAL

expand_dims

Reference: EXPAND_DIMS

exp

Reference: EXP

fill

Reference: FILL

floor_div

Reference: FLOOR_DIV

floor_mod

Reference: FLOOR_MOD

floor

Reference: FLOOR

fully_connected

Reference: FULLY_CONNECTED

gelu

Reference: GELU

greater_equal

Reference: GREATER_EQUAL

greater

Reference: GREATER

hard_swish

Reference: HARD_SWISH

l2_normalization

Reference: L2_NORMALIZATION

leaky_relu

Reference: LEAKY_RELU

LeakyReluOptions

less_equal

Reference: LESS_EQUAL

less

Reference: LESS

local_response_normalization

Reference: LOCAL_RESPONSE_NORMALIZATION

Notes:

logical_and

Reference: LOGICAL_AND

logical_not

Reference: LOGICAL_NOT

logical_or

Reference: LOGICAL_OR

logistic

Reference: LOGISTIC

maximum

Reference: MAXIMUM

max_pool_2d

Reference: MAX_POOL_2D

mean

Reference: MEAN

minimum

Reference: MINIMUM

mirror_pad

Reference: MIRROR_PAD

Notes:

mul

Reference: MUL

neg

Reference: NEG

not_equal

Reference: NOT_EQUAL

pack

Reference: PACK

padv2

Reference: PADV2

pad

Reference: PAD

pow

Reference: POW

prelu

Reference: PRELU

quantize

Reference: QUANTIZE

reduce_any

Reference: REDUCE_ANY

reduce_max

Reference: REDUCE_MAX

reduce_min

Reference: REDUCE_MIN

relu6

Reference: RELU6

relu_n1_to_1

Reference: RELU_N1_TO_1

relu

Reference: RELU

reshape

Reference: RESHAPE

resize_bilinear

Reference: RESIZE_BILINEAR

resize_nearest_neighbor
round

Reference: ROUND

rsqrt

Reference: RSQRT

shape

Reference: SHAPE

sin

Reference: SIN

slice

Reference: SLICE

softmax

Reference: SOFTMAX

space_to_batch_nd

Reference: SPACE_TO_BATCH_ND

space_to_depth

Reference: SPACE_TO_DEPTH

split_v

Reference: SPLIT_V

split

Reference: SPLIT

split

Reference: SPLIT

sqrt

Reference: SQRT

squared_difference

Reference: SQUARED_DIFFERENCE

square

Reference: SQUARE

squeeze

Reference: SQUEEZE

strided_slice

Reference: STRIDED_SLICE

sub

Reference: SUB

sum

Reference: SUM

tanh

Reference: TANH

tile

Reference: TILE

transpose_conv

Reference: TRANSPOSE_CONV

transpose

Reference: TRANSPOSE

unpack

Reference: UNPACK

Note

PyTorch models can be supported by exporting them to ONNX (for more information see tutorial on exporting to ONNX). Direct support for Pytorch 2 will be available in a future release.