MultiStream YOLOv8S Object Detection#
Introduction#
In this tutorial, we will show how to use the MultiStreamAcclerator API to perform multistream real-time object detection on MX3 to demostrate the MultiStream capability of the API. We will use the YOLOv8S model for our demo.
Note
This tutorial assumes a four-chip solution is correctly connected.
Download the Model#
The YOLOv8S pre-trained models are available on the Official YOLOv8S GitHub page. For the sake of the tutorial, we exported both TFLite and ONNX models for the user to download. The model can be found in the compressed folder yolov8_object_detection_c++.zip
to this tutorial.
Compile the Model#
The YOLOv8S model was exported with the option to include a post-processing section in the model graph. Hence, it needed to be compiled with the neural compiler autocrop
option.
After the compilation, the compiler will generate the DFP file for the main section of the model (yolov8s.dfp
) and
the cropped post-processing section of the model (yolov8s_post.tflite or yolov8s_post.onnx
).
The compilation step is typically needed once and can be done using the Neural Compiler API or Tool.
Hint
You can use the pre-compiled DFP and post-processing section yolov8_object_detection_c++.zip
to this tutorial and skip the compilation step.
from memryx import NeuralCompiler
nc = NeuralCompiler(num_chips=4, models="yolov8s.tflite", verbose=1, dfp_fname = "yolov8s", autocrop=True)
dfp = nc.run()
In your command line, you need to type,
mx_nc -v -m yolov8s.tflite --autocrop -c 4
In your python code, you need to point the dfp
via a generated file path,
dfp = "yolov8s.dfp"
In your C++ code, you need to point the dfp
via a generated file path,
fs::path model_path = "yolov8s.dfp";
from memryx import NeuralCompiler
nc = NeuralCompiler(num_chips=4, models="yolov8s.onnx", verbose=1, dfp_fname = "yolov8s", autocrop=True)
dfp = nc.run()
In your command line, you need to type,
mx_nc -v -m yolov8s.onnx --autocrop -c 4
In your python code, you need to point the dfp
via a generated file path,
dfp = "yolov8s.dfp"
In your C++ code, you need to point the dfp
via a generated file path,
fs::path model_path = "yolov8s.dfp";
Note
YOLOv8s can be run using both TFLite and ONNX. Only the path needs to be changed in the script.
CV Pipelines#
In this tutorial, we will show end-to-end implementations for the CV graph. Here, the overlay and the output display will be part of the output function connected to the MultiStreamAsyncAccl API. The following flowchart shows the different parts of the pipeline. It should be noted that the input camera frame should be saved (queued) to be later overlayed and displayed.
CV Initializations#
We will import the needed libraries, initialize the CV pipeline, and define common variables in this step.
import cv2
from queue import Queue, Full
from threading import Thread
from matplotlib import pyplot as plt
# Stream-related containers
self.streams = []
self.streams_idx = [True] * self.num_streams
self.stream_window = [False] * self.num_streams
self.cap_queue = {i: Queue(maxsize=10) for i in range(self.num_streams)}
self.dets_queue = {i: Queue(maxsize=10) for i in range(self.num_streams)}
self.outputs = {i: [] for i in range(self.num_streams)}
vidcap = cv2.VideoCapture(video_path)
self.streams.append(vidcap)
#include <opencv2/opencv.hpp> /* imshow */
#include <opencv2/imgproc.hpp> /* cvtcolor */
#include <opencv2/imgcodecs.hpp> /* imwrite */
fs::path default_videoPath = "../video.mp4";
// Application Variables
std::deque<cv::Mat> frames_queue;
cv::VideoCapture vcap;
Model Pre-/Post-Processing#
The pre-/post-processing steps are typically provided by the model authors and are outside of the scope of this tutorial. We provided a helper class with the tutorial compressed folder that implements the pre- and post-processing of YOLOv8, and the user can check it for their reference. You can use the helper class as follows,
from yolov8 import YoloV8 as YoloModel
# Initialize video captures, models, and dimensions for each streams
for i, video_path in enumerate(video_paths):
vidcap = cv2.VideoCapture(video_path)
# Initialize the model with the stream dimensions
self.model[i] = YoloModel(stream_img_size=(self.dims[i][1], self.dims[i][0], 3))
The accl.set_postprocessing_model()
function will automatically retrieve the output from the chip, apply the cropped graph post-processing section using the TFLite/ONNX runtime if you pass the corresponding TFLite/ONNX model, and generate the final output.
accl.set_postprocessing_model('tflite/model_0_yolov8s_post.tflite', model_idx=0)
In this case, we will use the TFLite runtime since the model passed is in TFLite format. Users can also write their own post-processing if TFLite/ONNX Runtime is not available on their system.
After that, output can then be sent to the post-processing code in the YOLOv8 helper class to get the detection on the output image. The class can be found as a part of the full code file.
cv::Mat preprocess(cv::Mat& image) {
cv::Mat resizedImage;
cv::resize(image, resizedImage, cv::Size(model_input_height, model_input_width), cv::INTER_LINEAR);
cv::Mat floatImage;
resizedImage.convertTo(floatImage, CV_32F, 1.0 / 255.0);
return floatImage;
}
std::vector<Box> get_detections(float* ofmap, int num_boxes, const cv::Mat& inframe) {
std::vector<Box> all_boxes;
std::vector<cv::Rect> cv_boxes;
std::vector<float> all_scores;
std::vector<Box> filtered_boxes;
// Precompute scaling factors once outside of the loop
const float y_factor = static_cast<float>(inframe.rows) / model_input_height;
const float x_factor = static_cast<float>(inframe.cols) / model_input_width;
// Iterate through the detections
for (int i = 0; i < num_boxes; ++i) {
// Extract coordinates and size for each box (pre-calculated)
float x0 = ofmap[i]; // x center
float y0 = ofmap[num_boxes + i]; // y center
float w = ofmap[2 * num_boxes + i]; // width
float h = ofmap[3 * num_boxes + i]; // height
// Scale the box coordinates to the original image size
x0 *= x_factor;
y0 *= y_factor;
w *= x_factor;
h *= y_factor;
// Compute the top-left and bottom-right coordinates of the box
int x1 = static_cast<int>(x0 - 0.5f * w);
int y1 = static_cast<int>(y0 - 0.5f * h);
int x2 = static_cast<int>(x0 + 0.5f * w);
int y2 = static_cast<int>(y0 + 0.5f * h);
// Iterate through the classes
for (int j = 4; j < features_per_box; ++j) {
float confidence = ofmap[j * num_boxes + i];
if (confidence > conf_thresh) {
// Add the box to the list if confidence is greater than threshold
Box box;
box.x1 = x1;
box.y1 = y1;
box.x2 = x2;
box.y2 = y2;
box.class_id = j - 4; // Adjust class id to start from 0
box.confidence = confidence;
all_boxes.push_back(box);
all_scores.push_back(confidence);
cv_boxes.emplace_back(cv::Rect(x1, y1, x2 - x1, y2 - y1));
}
}
}
// Apply Non-Maximum Suppression (NMS) to filter overlapping boxes
std::vector<int> nms_result;
if (!cv_boxes.empty()) {
cv::dnn::NMSBoxes(cv_boxes, all_scores, conf_thresh, nms_thresh, nms_result);
// Filter detections based on NMS result
for (int idx : nms_result) {
filtered_boxes.push_back(all_boxes[idx]);
}
}
return filtered_boxes;
}
// Function to draw bounding boxes
void draw_bounding_boxes(cv::Mat& image, const std::vector<Box>& boxes) {
for (const Box& box : boxes) {
// Draw rectangle
cv::rectangle(image, cv::Point(box.x1, box.y1), cv::Point(box.x2, box.y2), cv::Scalar(0, 255, 0), 2);
// Display confidence score as a label
std::string label = class_names[box.class_id];
int baseLine = 0;
cv::Size labelSize = cv::getTextSize(label, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
cv::putText(image, label, cv::Point(box.x1, box.y1 - labelSize.height), cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(255, 255, 255), 1);
}
}
The accl->connect_post_model();
function will automatically retrieve the output from the chip, apply the cropped graph post-processing section using the TFLite/ONNX runtime if you pass the corresponding TFLite/ONNX model, and generate the final output.
accl->connect_post_model(postprocessing_model_path);
In this case, we will use the TFLite runtime since the model passed is in TFLite format. Users can also write their own post-processing if TFLite/ONNX Runtime is not available on their system.
Define an Input Function#
We need to define an input function for the accelerator to use. In this case, our input function will get a new frame from the cam and pre-process it.
def capture_and_preprocess(self, stream_idx):
"""
Captures a frame for the video device and pre-processes it.
"""
got_frame, frame = self.streams[stream_idx].read()
if not got_frame:
self.streams_idx[stream_idx] = False
return None
try:
# Put the frame in the cap_queue to be processed later
self.cap_queue[stream_idx].put(frame, timeout=2)
# Pre-process the frame using the corresponding model
frame = self.model[stream_idx].preprocess(frame)
return frame
except Full:
print('Dropped frame .. exiting')
return None
Note
In the above code, method preprocess is used as pre-processing step. This method can be found as a part of the full code file.
bool incallback_getframe(vector<const MX::Types::FeatureMap<float>*> dst, int streamLabel) {
if (runflag.load()) {
cv::Mat inframe;
cv::Mat rgbImage;
bool got_frame = vcap.read(inframe);
if (!got_frame) {
std::cout << "No frame \n\n\n";
vcap.release();
return false;
}
cv::cvtColor(inframe, rgbImage, cv::COLOR_BGR2RGB);
{
std::lock_guard<std::mutex> ilock(frame_queue_mutex);
frames_queue.push_back(rgbImage);
}
cv::Mat preProcframe = preprocess(rgbImage);
dst[0]->set_data((float*)preProcframe.data, false);
return true;
}
else {
vcap.release();
return false;
}
}
Note
In the above code, method preprocess is used as pre-processing step. This method can be found as a part of the full code file.
Define Output Functions#
We also need to define an out function for the accelerator to use. Our output function will post-process the accelerator output and display it on the screen.
The output function will also overlay and display the output frame besides the MXA data collection and post-processing.
def postprocess(self, stream_idx, *mxa_output):
"""
Post-process the MXA output.
"""
dets = self.model[stream_idx].postprocess(mxa_output)
# Push the detection results to the queue
self.dets_queue[stream_idx].put(dets)
# Calculate the FPS
self.dt_array[stream_idx][self.dt_index[stream_idx]] = time.time() - self.frame_end_time[stream_idx]
self.dt_index[stream_idx] += 1
if self.dt_index[stream_idx] % 15 == 0:
self.fps[stream_idx] = 1 / np.average(self.dt_array[stream_idx])
if self.dt_index[stream_idx] >= 30:
self.dt_index[stream_idx] = 0
self.frame_end_time[stream_idx] = time.time()
Note
In the above code, method postprocess is used as post-processing step. This method can be found as a part of the full code file.
The output function will also overlay and display the output frame besides the MXA data collection and post-processing.
bool outcallback_getmxaoutput(vector<const MX::Types::FeatureMap<float>*> src, int streamLabel) {
src[0]->get_data(mxa_output);
{
std::lock_guard<std::mutex> ilock(frame_queue_mutex);
displayImage = frames_queue.front();
frames_queue.pop_front();
}
std::vector<Box> detected_objectVector = get_detections(mxa_output, num_boxes, displayImage);
draw_bounding_boxes(displayImage, detected_objectVector);
gui_->screens[0]->SetDisplayFrame(streamLabel, &displayImage, fps_number);
frame_count++;
if (frame_count == 1) {
start_ms = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::system_clock::now().time_since_epoch());
}
else if (frame_count % AVG_FPS_CALC_FRAME_COUNT == 0) {
std::chrono::milliseconds duration =
std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::system_clock::now().time_since_epoch()) - start_ms;
fps_number = (float)AVG_FPS_CALC_FRAME_COUNT * 1000 / (float)(duration.count());
frame_count = 0;
}
return true;
}
Connect the Accelerator#
The run function creates the accelerator, starts it with the specified number of streams, and waits for it to finish.
def run(self):
"""
The function that starts the inference on the MXA.
"""
accl = MultiStreamAsyncAccl(dfp='tflite/yolov8s.dfp')
print("YOLOv8s inference on MX3 started")
accl.set_postprocessing_model('tflite/model_0_yolov8s_post.tflite', model_idx=0)
self.display_thread.start()
start_time = time.time()
# Connect the input and output functions and let the accl run
accl.connect_streams(self.capture_and_preprocess, self.postprocess, self.num_streams)
accl.wait()
self.done = True
# Join the display thread
self.display_thread.join()
The main() function Creates the accelerator, YoloV7 object and starts the acceleartor and waits for it to finish
//Create the Accl object and load the DFP
MX::Runtime::MxAccl* accl = new MX::Runtime::MxAccl();
accl->connect_dfp(model_path.c_str());
accl->connect_post_model(postprocessing_model_path);
//Creating a YoloV7 object for each stream which also connects the corresponding stream to accl.
std::vector<YoloV8*>yolo_objs;
for(int i =0; i<video_src_list.size();++i){
YoloV8* obj = new YoloV8(accl,video_src_list[i],&gui,i);
yolo_objs.push_back(obj);
}
//Run the accelerator and wait
accl->start();
gui.Run(); //This command waits for exit to be pressed in Qt window
accl->stop();
The YoloV8() constructor connects the input stream to the accelartor.
YoloV8(MX::Runtime::MxAccl* accl, std::string video_src, MxQt* gui, int index) {
// Retrieve model info of 0th model (assuming YOLOv8)
model_info = accl->get_model_info(0);
// Allocate memory for YOLOv8 output (84 parameters per anchor, with 8400 anchors)
mxa_output = new float[num_boxes * features_per_box]; // YOLOv8 has 84 outputs per box
// Getting model input shapes and display size
model_input_height = model_info.in_featuremap_shapes[0][0];
model_input_width = model_info.in_featuremap_shapes[0][1];
// Bind the callback functions for input and output processing
auto in_cb = std::bind(&YoloV8::incallback_getframe, this, std::placeholders::_1, std::placeholders::_2);
auto out_cb = std::bind(&YoloV8::outcallback_getmxaoutput, this, std::placeholders::_1, std::placeholders::_2);
// Connect the stream to the accelerator object
accl->connect_stream(in_cb, out_cb, index /**Unique Stream Idx */, 0 /**Model Idx */);
}
Third-Party License#
This tutorial uses third-party software, models, and libraries. Below are the details of the licenses for these dependencies:
Model: Yolov8 from Ultralytics GitHub
License: AGPL
Code and Pre/Post-Processing: Some code components, including pre/post-processing, were sourced from their GitHub
License: AGPL
Summary#
This tutorial showed how to use a MultiStreamAccelerator API to run a multistream real-time inference using an object-detection model. The code and the resources used in the tutorial are available to download:
See also